Influence of Diffusive Transport on the Structural Evolution of W/O/W Emulsions

Sameh, Herzi, Essafi Wafa, Bellagha Sihem, and Leal-Calderon Fernando. “Influence of diffusive transport on the structural evolution of W/O/W emulsions.” Langmuir 28, no. 51 (2012): 17597-17608.
URL1

Double emulsions of the W/O/W type are compartmented materials suitable for encapsulation and sustained release of hydrophilic compounds. Initially, the inner aqueous droplets contain an encapsulated compound (EC), and the external phase comprises an osmotic regulator (OR). Over time, water and the solutes dissolved in it tend to be transferred from one aqueous compartment to the other across the oil phase. Water transfer being by far the fastest process, osmotic equilibration of two compartments is permanently ensured. Since the transport of the EC and OR generally occurs at dissimilar rates, the osmotic regulation process provokes a continuous flux of water that modifies the inner and outer volumes. We fabricated W/O/W emulsions stabilized by a couple of amphiphilic polymers, and we measured the inward and outward diffusion kinetics of the solutes. The phenomenology was explored by varying the chemical nature of the OR while keeping the same EC or vice versa. Microscope observations revealed different evolution scenarios, depending on the relative rates of transfer of the EC and OR. Structural evolution was mainly determined by the permeation ratio between the EC and the OR, irrespective of their chemical nature. In particular, a regime leading to droplet emptying was identified. In all cases, evolution was due to diffusion/permeation phenomena and coalescence was marginal. Results were discussed within the frame of a simple mean-field model taking into account the diffusive transfer of the solutes.

Cited by 31
Related articles